Evaluation of Definite Integrals

IMPORTANT

Evaluation of Definite Integrals: Overview

In this topic, we will discuss the evaluation of definite integrals. We will learn it by making use of antiderivative. We will also understand some fundamental theorems in order to evaluate the integrals

Important Questions on Evaluation of Definite Integrals

HARD
IMPORTANT

If y=x1xlntdt, then the value of dydx at x=e is

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

HARD
IMPORTANT

A cubic fx vanishes at x=-2 & has relative minimum/maximum at x=-1, x=13.
Find -11fxdx , if coefficient of x3=1 in fx.

HARD
IMPORTANT

If π4π3sin3θ-cos3θ-cos2θsinθ+cosθ+cos2θ2007sinθ2009cosθ2009dθ=a+bd-1+cdd, where a, b, c  and d are all positive integers. Then the value of (a+b+c+d) is

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

EASY
IMPORTANT

The value of  1e37πsinπlnxxdx  is:

HARD
IMPORTANT

Let f be a non-negative function defined on the interval [ 0,1 ]. If  0x1(f'(t))2dt=0xf(t)dt,0x1,  and   f(0)=0,  then:

EASY
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

MEDIUM
IMPORTANT

The value of the integral 0 1 1x 1+x dx is

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

EASY
IMPORTANT

Let  fx=xx,  for every real number x, where [x] is the integral part of x. Then  11f(x)dx is:

MEDIUM
IMPORTANT

If fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are respectively 

MEDIUM
IMPORTANT

fx=Asinπx2+B, f'12=2 and01fxdx=2Aπ, then constants A and B are

HARD
IMPORTANT

The value of 0π/4sinx+cosx9+16sin2xdx is

 

MEDIUM
IMPORTANT

The value of e-π4+0π4e-xtan 50xdx0π4e-x(tan49x+tan51x)dx 

MEDIUM
IMPORTANT

06e3x+6e2x+11ex+6dx=

MEDIUM
IMPORTANT

The value of the integral -loge2loge2exlogeex+1+e2xdx is equal to

EASY
IMPORTANT

Let 5fx+4f1x=1x+3, x>0. Then 1812fxdx is equal to